Fast and Slow Relaxations to Bi-cluster Configurations for the Ensemble of Kuramoto Oscillators
نویسنده
چکیده
We present asymptotic relaxation estimates to bi-cluster configurations for the ensemble of Kuramoto oscillators with two different natural frequencies which have been observed in numerical simulations. We provide a set of initial configurations with a positive Lebesgue measure in T leading to bi-(point) cluster configurations consisting of linear combinations of two Dirac measures in super-threshold and threshold-coupling regimes. In a super-threshold regime where the coupling strength is larger than the difference of two natural frequencies, we use the 1-contraction property of the Kuramoto model to derive exponential convergence toward bi-cluster configurations. The exact location of bi-cluster configurations is explicitly computable using the coupling strength, the difference of natural frequencies, and the total phase. In contrast, for the thresholdcoupling regime where the coupling strength is exactly equal to the difference of natural frequencies, the mixed ensemble of Kuramoto oscillators undergoes two dynamic phases. First, the initial configuration evolves to the segregated phase (two segregated subconfigurations consisting of the same natural frequency) in a finite time. After this segregation phase, each subconfiguration relaxes to the asymptotic phase algebraically slowly. Our analytical results provide a rigorous framework for the observed numerical simulations.
منابع مشابه
The Kuramoto model of coupled oscillators with a bi-harmonic coupling function
We study synchronization in a Kuramoto model of globally coupled phase oscillators with a bi-harmonic coupling function, in the thermodynamic limit of large populations. We develop a method for an analytic solution of self-consistent equations describing uniformly rotating complex order parameters, both for single-branch (one possible state of locked oscillators) and multi-branch (two possible ...
متن کاملExperimental study of synchronization of coupled electrical self-oscillators and comparison to the Sakaguchi-Kuramoto model.
We explore the collective phase dynamics of Wien-bridge oscillators coupled resistively. We carefully analyze the behavior of two coupled oscillators, obtaining a transformation from voltage to effective phase. From the phase dynamics we show that the coupling can be quantitatively described by Sakaguchi's modification to the Kuramoto model. We also examine an ensemble of oscillators whose freq...
متن کاملClassification of attractors for systems of identical coupled Kuramoto oscillators.
We present a complete classification of attractors for networks of coupled identical Kuramoto oscillators. In such networks, each oscillator is driven by the same first-order trigonometric function, with coefficients given by symmetric functions of the entire oscillator ensemble. For [Formula: see text] oscillators, there are four possible types of attractors: completely synchronized fixed poin...
متن کاملPlasticity and learning in a network of coupled phase oscillators.
A generalized Kuramoto model of coupled phase oscillators with a slow varying coupling matrix is studied. The dynamics of the coupling coefficients is driven by the phase difference of pairs of oscillators in such a way that the coupling strengthens for synchronized oscillators and weakens for nonsynchronized pairs. The system possesses a family of stable solutions corresponding to synchronized...
متن کاملSelf-organized partially synchronous dynamics in populations of nonlinearly coupled oscillators
We analyze a minimal model of a population of identical oscillators with a nonlinear coupling—a generalization of the popular Kuramoto model. In addition to well-known for the Kuramoto model regimes of full synchrony, full asynchrony, and integrable neutral quasiperiodic states, ensembles of nonlinearly coupled oscillators demonstrate two novel nontrivial types of partially synchronized dynamic...
متن کامل